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Figure 1. A snapshot of part of the scenario file

Figure 2. (a) The structure of the settings file is organized to give all the required information to SLEUTH
for a large number of regions. The first line is common for all the regions and indicates the location of the
data, a text to identify the results, and (optionally) the number of Monte Carlo trials. The next 8 lines are
repeated for all clusters of regions and represent, in order: Auxiliary Diffusion Multiplier, coefficients for
calibration (Diffusion, Breed, Spread, Slope and Road), and the best fitted set of coefficients for prediction
mode. The file finishes with an ‘END’ flag. (b) Settings file used for the calibration and prediction of the
study area (see CONUS example below). Depending on the option chosen, not all lines are needed. Here,
the script was run in automated mode for all counties, so neither coefficients nor counties’ names were
necessary.

SLEUTH (Clarke, Hoppen, and Gaydos 1997) is one of the more broadly applied models for the study of land
use change and urban dynamics. When the model is being applied to a large region, it is often desirable to
partition the study area into sub-regions, such as states, counties, or watersheds. This sub-regionalization
greatly increases the workload, requiring the preparation of each sub-region’s input data sets and run
parameters, and then evaluating multiple output files for each sub-region. To solve this problem, we
developed two Python scripts that automate much of the workflow, saving time and minimizing user error.
To use the scrips, the user must first have all of the base data sets prepared for the entire study area. The
first script uses arcpy to extract the information for user-specified sub-regions (e.g. counties or watersheds)
and then stores it in the correct format, using the correct naming convention, in a directory system that is
ready to use for SLEUTH. The second script, called SWizard, is able to perform calibration, validation, and
prediction automatically depending on the user needs. To demonstrate the SWizard capabilities, we applied
SLEUTH to the continental United States, using counties as our sub-regions, at a resolution of 360m per
pixel. Extracting the input data for 3,109 counties took 1 hour 6 minutes, while running SWizard on a single
Linux desktop computer took 19 hours and 23 minutes. We were thus able to model urban land change for
the entire continental US in less than 24 hours.

SLEUTH is one of the more widespread cellular automata models to simulate land use/land cover change. It
uses four growth rules (spontaneous, new centers, edge growth, and road-influenced growth) that are
controlled by five parameters (diffusion, breed, spread, slope, and road) and requires a computationally
and labor intensive calibration. Among its limitations, the model fails to match the growth pattern correctly
when the study area is characterized by a heterogeneous and diverse urbanization pattern, since the same
combination of parameters is applied for the entire area. To correct that issue, it is necessary to divide the
area of interest in more homogeneous sub-regions (e.g. counties or watersheds) where urbanization
pattern variability is minimized (Jantz et al. 2010).

In that context, carrying out SLEUTH simulations becomes a tedious and repetitive task highly prone to
causing mistakes, with the subsequent waste of time and effort.

SWizard was developed to automate many of the workflow tasks involved with calibration, validation, and forecasting with SLEUTH. It is a
script written in Python that runs in Linux, and intermediates between the user and SLEUTH. A text file, called the settings file, is used to tell
the script what it has to do (fig 2). The power of this script is that it is useful for launching the SLEUTH program for a large number of scenarios
in just one go, but is flexible so that the user can have complete control of the process or let the script do all the hard work.

• We demonstrated that SWizard is a useful tool for saving time for those who are using SLEUTH to
model land use change, especially when users have multiple study areas or sub-regions to model.

• This script opens the door to model extensive areas and for studying differences across a large
number of regions. It also provides improved capacity for testing the adjustment and behavior of
the model, due to the amount of results that can be generated in an easier way.

• The analysis of 3,090 counties allowed for the identification of some factors that could affect
model accuracy. Certain combinations of land available to new urbanization, urban growth, urban
pattern, and topography have high likelihoods of producing poor fit statistics. In general, we can
say that the more “freedom” the model has, the more inaccuracy it shows. That brings up the
importance of the exclusion or exclusion-attraction layer (Jantz et al. 2010).

Automatic Calibration with SWizard

SWizard can replicate the commonly used “brute force” calibration technique to find a
parameter combination with the best fit score. SLEUTH compares the prediction with the
observational data to calculate a number of metrics to measure the model’s goodness of
fit. There is no consensus for choosing the best metric, and each metric measures
different aspects of the model’s performance. Jantz et al. (2010) and Jantz, Drzyzga and
Maret (2014) focus on spatial pattern metrics and measures of the overall amount of
development. In these examples, fractional difference metrics that compare simulated
and observed pixels (urban land), edges, and clusters are selected and integrated in a
new composite metric of goodness of fit.

During the calibration process, SWizard calculates the composite fit metric and selects one combination of parameters with the lowest value, 
which indicates that the simulation is a close match to the observed. Each selection is identified and the associated combination and metrics, 
including the composite fit metric, are stored in a csv file. Users have the ability to edit the Python script to formulate their own composite 
metric, such as the optimal SLEUTH metric (OSM) (Dietzel and Clarke 2007).

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝐹𝐹𝑀𝑀𝐹𝐹𝑀𝑀 = 𝐺𝐺𝑀𝑀𝑀𝑀𝐺𝐺2 + 𝑀𝑀𝑒𝑒𝑒𝑒𝑀𝑀2 + 𝑀𝑀𝐺𝐺𝑐𝑐𝑐𝑐𝐹𝐹𝑀𝑀𝑀𝑀2

Table 3. Variables taken from the input data to characterize county’s at the beginning o=f the 
period
Variable Description
Urb01 % of pixels coded as urban at the beginning of the period (2001)
Available % county percentage of suitable pixels for new urbanization in 2001. It is 

considered available those pixels that are not urbanized, not completely 
excluded and slope below 20%

AGr Amount of available area in 2001 referenced to the growth observed
AUr Amount of available area referenced to the urbanized area in 2001
Slope Average slope in percentage of the available land in 2001
Patches Number of contiguous clusters of available land in 2001
Patch size Median area of available land patches in 2001
LAP Percentage over the total available land of the largest patch in 2001
Centers Number of contiguous urban clusters in 2001 greater than 3 pixels 
LC Percentage of urban area in 2001 that belongs to the largest urban center

To ensure the correct performance of SWizard, we ran the script for an automatic calibration based on the
2001-2006 time period, followed by a prediction (option 6) with 25 Monte Carlo trials. This represents the
most complex process in SWizard, so that most of its functionality for other options is tested. SWizard spent
19 hours, 23 minutes and 53 seconds to make the calibration and prediction of the 3,109 counties, which is
a considerable reduction in time if we were to make the scenario files and run SLEUTH manually.

In spite of this, there were
some cases where SLEUTH
had trouble running, in 21
counties of 3,109; we found
that several of those cases
were related to layers that
present a road cover of 100%
in the county. In the cases
where SLEUTH crashes,
SWizard just skips that county
and registers the issue.

Fit statistic Definition

Pixels Modeled urban pixels compared to actual urban pixels for each control year. Referred as 
“population” and as “area” in SLEUT’s output files

Edges Modeled urban edges pixels compared to actual urban edge pixels for each control year

Clusters Modeled number of urban clusters compared to actual urban clusters for each control 
year. Urban clusters are areas of contiguous urban land using the 8-neighbor rule.

Table 1. SLEUTH-3r provides a set of new fit metrics which compares the
observed and modeled values. For each of them SLEUTH-3r calculates three
versions: the algebraic difference of modeled and observed, the ratio, and
fractional change, both referenced to the observed value. The metrics described
below were used to calculate the new global fit metric. (Table extracted from
Jantz et al. 2010)

Table 4. Groups’ mean value of variables described in table 3 and ordered by descending global fit metric score. The amount of available land for
new developments appears as the main factor for the model’s accuracy. The fragmentation of the available land and a less flat topography
increases SLEUTH’s reliability.

Group Urb01 Available Slope Patches Patch size LAP Centers LC AGr AUr Global Fit
I 0.43 98.16 1.42 1.39 11328.51 99.99 3.98 29.42 12,390.87 478.87 1.16 **

IV 0.30 84.11 2.62 73.82 3.03 97.37 7.49 30.40 31,842.43 815.71 0.60 **
VI 1.03 93.05 1.51 11.70 60.46 99.39 7.46 24.33 7,800.21 183.08 0.39 **
VII 1.42 65.73 5.73 80.12 2.54 85.77 9.39 19.26 4,949.66 111.62 0.11*
II 4.80 84.22 1.69 52.08 1.15 97.53 31.73 26.93 605.72 26.80 0.07
V 15.06 44.38 2.01 176.45 1.44 60.59 48.52 46.10 199.05 5.40 0.07
III 0.87 31.74 5.13 427.80 2.63 60.76 21.16 24.73 9,249.66 147.06 0.06

** Significantly greater than 0.2 (P<0.0005)
• Significantly greater than 0.086 (P<0.001)

Counties with a large amount of land available to urbanize tend to demonstrate low model fit; this tendency
is aggravated when the ratio between available land and urbanized land is very high. Fragmentation of
available land and slope are factors to reduce differences between model and observation. Counties with
similar available area, if this is fragmented or less flat, usually have better scores because of the effect that
those factors have in narrowing the suitability for development. Groups I, IV, and VI, with the worst results,
clearly show a correlation with the degree of urbanization, and fit scores increase when the amount of urban
land increases. The same occurs with the number of urban centers (urban clusters with more than 3 pixels),
but at a much more reduced scale. Since the metric is a combination of measurements based on urban area,
urban edge, and number of clusters, it is logical that those factors affect the level of accuracy in the metric.
Meanwhile, it seems that the urban effect is not as strong in groups II, III, V, and VII, and probably the
inaccuracy in clusters or edges has more relevance.

To be considered an acceptable goodness of fit, all the statistics involved in the metric must be within ±5% of the
2011 values (Jantz at al. 2010; Jantz, Drzyzga, and Maret 2014); however, only 40% of the predictions met this
requirement (scores below 0.086.) The goodness of fit shows a clear spatial pattern distribution (see map avobe),
where counties with a low model accuracy tend to be concentrated in specific regions. Using k-means, we
identified seven groups that correspond reasonably with the distribution of the poorer scores. Groups I, IV, and VI
clearly exhibit much higher values than the rest of groups do (fig. 5). The analysis of the groups determines there
are statistical differences between groups, and the groups I, IV, and VI have higher values on average than the
critical value of 0.086.

Figure 5. Box-plot of Global Fit Metric for 7 k-mean
groups. Red line represent the threshold of 0.086.
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Figure 6. The accuracy of the model shows a dependency with 
the urban extension in groups I, IV, and VI
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Table 2. Input data sets; All data sets were rasterized at the same extent and grid system at a 
resolution of 360m.
Layer Source Description
Urban National Land Cover Data Urban (1): Impervious classes 

Not urban (0): rest of classes
Exclusions USGS Protected Areas Database 

(2012), and  National Wetlands 
Inventory (2014)

Completely excluded (100): water bodies and 
protected areas
Partially excluded (80): Wetlands

Slope The USGS 1/3 arc second digital 
elevation models

Percentage slope derived from DEM

Transportation Census Bureau TIGER roads S1100, S1200, S1400, Other

To test the capacity of the new script, we ran it for the entire continental United States (CONUS). For
demonstration purposes, the county was selected as the spatial unit for analysis, resulting in a total of 3,109
counties to be assessed and modeled individually.
For this application, we relied on national-scale, public domain raster and vector data sets (table 2). Once
maps for the whole area were made, the arcpy script was used to extract and store each county’s data with
the appropriate naming convention, to a directory structure ready to be read by SWizard (fig 4).

Figure 4. Directory structure accessible for Swizard.


