- Status 2011
- Fragmentation Index
- Landscape Units, Subunits & Types
- Urban Growth Projections & Energy Infrastructure Impacts
- Forest Losses
- Landscape Configuration Change

The effects of future urbanization and energy infrastructure expansion on forest fragmentation

Dr. Claire Jantz *CLUS Director* Antonia Price *CLUS Project Manager*

Alfonso Yáñez Morillo

CLUS Research Analyst

Dr. Scott Drzyzga Dr. Christopher Woltemade Dr. Tim Hawkins *CLUS Affiliate Scholars*

Dr. Patrick Jantz Northern Arizona University

How will forest ecosystems and hydrologic processes in the Delaware River Basin be affected by climate change and land cover change?

www.drbproject.org

Status at 2011

Class	DRB		Highlands		Lowlands	
	Has	%	Has	%	Has	%
Forest	1,796,146	56.5	1,124,839	80.8	671,307	37.6
Urban	682,620	21.5	102,857	7.4	579,764	32.4

Land use area and its percentage respect of the land in the whole basin and in the two regions.

Urban Histogram

Generating Future Forest scenarios

NLCD 2011

• 100 simulations for each scenario

Urban & Power line Projections

Cooperio	Total growth		Highlands		Lowlands	
Scenario	ha	rate	ha	rate	ha	rate
Corridors	272,018	0.45	40,477	0.07	231,541	0.38
Centers	142,850	0.24	11,459	0.02	131,391	0.22
Power lines	50,629		14,090		36,539	

Annual rate in percentage

- Development Intensity: Percentage of available land in 2011 developed during simulation.
- Intensity average of 13% and maximum of 73% in the most intensive scenario
- Urban growth and affects more the southern landscapes than the highland zone.
- Area affected for future energy transmission infrastructure much less intense than urban growth and is more evenly distributed between zones.

Habitat Fragmentation

Fragmentation: "Process during which a large expanse of habitat is transformed into a number of smaller patches of smaller total area" (Wilcove, 1986)

Fragmentation has implication in four aspects of the habitat pattern:

- Habitat Loss
- Number of patches
- Size of patches

Number of Patches

NP

• Isolation of patches

Habitat Amount (%)

Forest (%)

Same habitat loss may result in different pattern change

* *Figure obtained from* Fahrig, Lenore. "Effects of Habitat Fragmentation on Biodiversity." *Annual Review of Ecology, Evolution, and Systematics* 34 (2003): 487-515. www.jstor.org/stable/30033784.

Quantifying Fragmentation with the Equivalent Area Index

- Look for a Fragmentation measure sensitive to most pattern aspects.
- Structural types can be weighted to transform the habitat area into an equivalent area considering the morphological spatial structure.
- The core coefficient (α) is dependent of the patch size making the index more sensible to the distribution of patch sizes.
- Coefficients can be defined with ecological meaning, relating the index with the concept of **habitat quality**.

$$eqArea = \sum (A_i * w_i)$$

 A_{j} : area of structural type i, c_{j} : structural type i coefficient.

$$eqIndex = \frac{\sqrt{eqA(eqA + A)}}{4S}$$

eqA: equivalent habitat area (eqArea),

A: total habitat area,

S: Reachable landscape which is the habitat and its surrounding area, defined by a buffer of 500m.

P. Vogt & K. Riitters, 2017: GuidosToolbox: universal digital image object analysis. European Journal of Remote Sensing (TEJR), DOI: http://dx.doi.org/10.1080/22797254.2017.1330650

- Fragmentation trend to increase the proportion of noncore types and reduce the core area sizes, the equivalent area in more fragmented landscapes is smaller.
- The difference between forest area and equivalent area could be consider as a measurement of fragmentation.
- It is strongly related with the habitat abundance, as we observe the landscapes in the basin follows a well defined relationship between habitat abundance and equivalent

- the equivalent area is a measure related with several aspects of the habitat pattern.
- The shape of the curve is result of the land transformation history in the basin and how the activities have modelled landscapes at different stages.

Landscape 618 P= 0.929 I = 0.904 Ir = 0.404

Landscape 517 P= 0.925 I = 0.802 Ir = -9.237

Landscape 823 P= 0.809 I = 0.767 Ir = 3.309

Landscape 796 P= 0.822 I = 0.749 Ir = -0.208

Landscape 379 P= 0.809 I = 0.614 Ir = -11.981

Landscape 579 P= 0.619 I = 0.500 Ir = -0.251

Landscape 453 P= 0.608 I = 0.431 Ir = -5.880

Landscape 50 P= 0.470 I = 0.418 Ir = 6.985

Landscape 115 P= 0.482 I = 0.363 Ir = 0.301

Landscape 150 P= 0.497 I = 0.326 Ir = -4.774

Landscape 66 P= 0.221 I = 0.177 Ir = 3.375

Landscape 516 P= 0.221 I = 0.148 Ir = 0.415

Landscape 399 P= 0.052 I = 0.078 Ir = 3.552

Landscape 196 P= 0.057 I = 0.045 Ir = -0.071

Forest Losses in 2100

Companie	Total Losses		Highlands		Lowlands	
Scenario	ha	%	ha	%	ha	%
Corridors	36,390	7.4	36,390	3.2	96,761	14.4
Centers	9,667	3.2	9,667	0.9	48,552	7.2
Power lines	10,967	1.2	10,967	1.0	10,278	1.5

Connector	Total growth		Highlands		Lowlands	
Scenario	ha	%	ha	%	ha	%
Corridors	272,018	0.45	40,477	89.9	231,541	41.8
Centers	142,850	0.24	11,459	84.4	131,391	36.9
Power lines	50,629		14,090	77.8	36,539	28.1

Annual rate in percentage

Forest Loss (%) ~ Development Intensity + Ir +0

Coefficients	:			
	Estimate	Std. Error	t value	Pr(> t)
Dev. Int.	48.520	1.417	34.231	< 2e-16
lr	-2.939	0.702	-4.187	5.03e-05

Residual standard error: 3.446 on 137 degrees of freedom Multiple R-squared: 0.8976, Adjusted R-squared: 0.8961 F-statistic: 600.7 on 2 and 137 DF, p-value: < 2.2e-16

Are Centers and Corridors scenarios equivalent?

- Comparison of forest lost generated by both scenarios at the same development intensity.
- Differences are statistically significant, but are close to 1%.
- Differences remain consistent along the loss gradient.
 - Paired t-test

 $\bar{d} = 1.092 \% p$ -val = 1.97e-10

• Regression Analysis

		Estimate	Std. Error	t-value	Pr(> t)
In	tercept	0.936	0.191	4.894	1.31e-5 ***
	Slope	1.019	0.016	63.488 ⁽¹⁾	< 2e-16 ***
				1.1704 ⁽²⁾	0.247
(1) (2)	H0: Slo H0: Slo	pe = 0 H1: s pe = 1 H1: s	lope ≠ 0 lope > 1	$R_{adj}^2 =$	0.9962

Classifying Landscapes

Forest presence		Urban				
		Not frequ	Frequent			
Infrequent	≤ 30%	Agricultural		Suburban		
Frequent	31% - 43%	Rural Mosaic		Sub. Mosaic		
Abundant 44% - 60%		Dense Mosaic		Forost		
Very Abundant	61% - 75%	Forest Mosaic	Aggregated	Urban		
Deeply	76% - 89%	Forest Divided	Opened			
Forested	≥ 90%	Forest Continuous				

Evolution of Fragmentation. Change of Ir Index

- Negative differences of *Ir* index over time represent transitions towards more fragmented situations.
- Energy transportation infrastructure has more capacity to divide big patches, as a result it produces more fragmented landscapes with less losses.
- Urban development shows more variety of direction of the change, that reflects the variability of factors and process involved.
 - ✓ Isolation
 - Discriminant removal
 - ✓ Edge density
 - ✓ Etc...
- Landscapes with high development intensity trend to reduce the fragmentation index.
- Urban development proportionally affects more habitat of less quality.

Trajectories of Ir index when Development intensity increase in time

- Forested landscapes or dense mosaics, usually with more than 60% of forest.
- Development intensity is high or interphase forest-urban

- Agricultural areas.
- Historical process

- Landscapes with important urban presence.
 - Forest Mosaics (<50%)
 - Simple Topography

Conclusions

- Many factors can influence urban growth fragmentation pattern: forest abundance, topography and conservation areas and there is no single recipe.
- Initial conditions of habitat pattern may influence the fragmentation process. For example, aggregated patterns may prevent slightly habitat loss, however the influence can be shaded by other circunstances.
- Principal divergences of the historical pattern are raised when Urbanization occurs in forest landscapes or rural mosaics with large amount of forest, instead to have a agricultural transition.
- This is relatively new and is expected to increase in the future when metropolitan suburbs reach forest landscapes.
- The new pattern will have ecological implications. Less number of patches, some of then relatively bigger but with more simple shapes.
- We have to consider the new matrix will be less suitable and perturbations will increase. Also that it is a permanent matrix, there is no backward.
- Connectivity probably will be an issue in some areas, but this is a subject for a future chapter.

Urban growth in forested landscapes maybe will create new paths in the fragmentation process transforming the shape of the curve.

Contact Us!

Alfonso Yáñez Morillo

Research Analyst Center for Land Use and Sustainability ayanezmorillo@ship.edu

Claire Jantz, Ph.D.

CLUS Director & Professor Department of Geography-Earth Science <u>cajant@ship.edu</u>

Antonia Price

Project Manager Center for Land Use and Sustainability afprice@ship.edu

www.centerforlanduse.org

DELAWARE RIVER BASIN

SHIPPENSBURG UNIVERSITY

www.drbproject.org

• FINAL