Delaware River Watershed Initiative

ACCELERATING CONSERVATION, ASSESSING IMPACT.

Phase 2 Planning:
Shippensburg University
Future Land Use Scenarios
February 23, 2017

Presenter: Dr. Claire A. Jantz

Purpose

Coordinating Committee's perspective

What will be available, methodology

How scenarios can inform planning

Timeline/accessing the data

Supporting Focus Area Selection

Using tool not required

Comparing focus areas:

- Threatened protection focus area: beneficial to protect
- Restoration/Protection focus area: significant development upstream anticipated that could over-ride benefits

Validating and tie breaking

Local knowledge may supersede results

Modeling future development in the Delaware River Basin (DRB2070 version 1.0)

Dr. Claire A. Jantz

Dr. Scott Drzyzga

Mr. Alfonso Yáñez

Ms. Antonia Price

Mr. Joshua Barth

Ms. Caitlin Lucas

Director and Professor

Director and Professor

GIS Analyst

Project Coordinator

Graduate Student Fellow

Student Fellow

About the CLUS

- We are housed within the Department of Geography-Earth Science at Shippensburg University
- The mission of the CLUS is to support science-based solutions to interdisciplinary sustainability challenges
- We promote sustainable land use, economic development, and cultural & natural resource management at local, regional, and global scales

www.centerforlanduse.org

Mapping and modeling land use in the Delaware River Basin

MAPPING

High-resolution LiDAR-based land cover data for all 43 counties in the watershed

MODELING

Connecting models of land cover change, climate change, hydrology, and tree species to explore development and environmental impacts

MONITORING

Feasibility Analysis: establishing a longterm land cover monitoring program

www.drbproject.org

High-Resolution LiDAR-based land cover data:

University of Vermont Spatial Analysis Lab

Available on PASDA: www.pasda.psu.edu (#DRWI)

OR on our website: www.drbproject.org/products/

Today's Webinar

- Forecasting development to 2070 under "baseline" conditions
 - Our approach
 - Inputs and outputs
 - Example applications
- The release of DRB2070 version 1.0 baseline data
- What's next

SLEUTH (Slope, Land use, Exclusion, Urban, Transportation, Hillshade) is an open source, probabilistic, cell-based model

SLEUTH model inputs (DRB2070 Version 1.0 Baseline)

Developed/not developed

NLCD 2001 - 2011

- Developed, High Intensity
- Developed, Low Intensity
- Developed, Medium Intensity Developed, Open Space
- Developed, Open :
- Pasture/Hay
- Cultivated Crops
- Shrub/Scrub

- Emergent Herbaceous Wetlands
- Woody Wetlands
- Evergreen Forest
- Mixed Forest
- Deciduous Forest
- Grassland/Herbaceous
- Open Water
- Barren Land (Rock/Sand/Clay)

SLEUTH model inputs (DRB2070 Version 1.0 Baseline)

Transportation

Slope

SLEUTH model inputs "exclusion/attraction" layer

 Defines areas that repel or attract development

Environmental suitability factors

SLEUTH model inputs "exclusion/attraction" layer

DRB2070 Version 1.0 Baseline Exclusion/Attraction Map

Exclusion/Attraction

SLEUTH (Slope, Land use, Exclusion, Urban, Transportation, Hillshade) is an open source, probabilistic, cell-based model

Roll-Out Plan

DRB2070 Version 1.0 Baseline:

- **Data files:** Proportion developed for catchments (2001, 2011, 2030, 2070) prepackaged with an ArcMap document (.mxd) available in 1 week
- ArcGIS online tool: available in 1-2 weeks
- Integration with SRAT: available in 2-3 weeks

www.drbproject.org/products

What's Next?

DRB2070 Version 2.0:

- Baseline scenario: recent trends
- Alternative scenario 1: Increased population with growth along corridors (focus on sprawl and climate change)
- Alternative scenario 2: Localized growth in historic centers (focus on conservation and technology with centralized growth "hubs")

Stay tuned for: How will forest ecosystems and hydrologic processes in the DRB be affected by climate change and land cover change?

Gridded Hydrologic Model **Tree Species Distribution Model** Water Runoff Model

With funding from the Delaware Watershed Research Fund

DRB Project team @ SU

Claire Jantz, Ph.D.

Project Director cajant@ship.edu

Scott Drzyzga, Ph.D.

Project Director sadrzy@ship.edu

*Antonia Price

Project Coordinator afprice@ship.edu 717-477-1519

Alfonso Yáñez Morillo

Research Analyst ayanezmorillo@ship.edu

Joshua Barth

Graduate Student Fellow ib7337@ship.edu

Caitlin Lucas

Student Fellow cl6707@ship.edu

February 23, 2017 | Delaware River Watershed Initiative | Webinar

Thank you!

